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Lecture 13 Summary 

Phys 404 

 

 The goal of this lecture is to set up a purely classical theory of statistical mechanics.  In other 

words, if all we want to do is study thermodynamics and statistical mechanics in the high-temperature 

and dilute (concentration     ) limit, why do we need to start with a quantum mechanical solution?  

Let’s consider the limit where the temperature          , so that the quantized nature of the 

energy levels do not play a role in the statistical properties.  We will use classical expressions for the 

dynamics of the system and calculate a classical partition function.  With that we can then do the 

standard calculations to get all of the thermodynamic quantities we need.  To attack this problem, we 

first have to do a little quantum mechanics! 

 In the semi-classical limit of quantum mechanics, one finds that the Bohr-Sommerfeld 

quantization condition holds to good approximation.  This condition is stated as         , where   is 

the non-relativistic momentum of the particle,   is its coordinate,             is a positive integer, 

and   is Planck’s constant.  The integral is taken over a closed ‘orbit’ or motion of the particle.  Bohr 

used this idea to quantize the angular momentum of the electron in its orbit around the proton and 

created the first quantum model of the hydrogen atom.  His idea was that the electron completed a 

journey around the proton in such a way that its matter wave function oscillated exactly an integer 

number of wavelengths around the closed orbit.  This can be stated as  
  

   
  , where     is the 

deBroglie wavelength of the matter wave that describes the particle, and is given by        .  

Substituting this into the integral gives  
  

   
  , or         , which is the Bohr-Sommerfeld 

quantization condition.  A similar result can be derived in the semi-classical limit of quantum mechanics 

using the WKB approximation (Griffiths, Quantum Mechanics, Chapter 8).  Hold on to this thought… 

 Going back to pure classical physics, consider the harmonic oscillator in one dimension.  This is a 

model of a mass  , connected to a stationary wall by a Hooke’s law spring of spring constant  , and 

sitting on a friction-less surface.  The spring has an equilibrium length, and under that condition the 

particle resides at coordinate     .  If the mass is moved left or right, the spring exerts a restoring 

force, and the mass oscillates in time with a frequency given by       .  The Hamiltonian is an 

expression for the total energy of a particle (or system of particles) in terms of the coordinates and 

momenta of the particles.  The Hamiltonian for a one-dimensional harmonic oscillator is   
  

  
 

     .  The total energy remains fixed as the motion evolves, meaning that the Hamiltonian is equal to 

a fixed constant, the total energy  .  The motion of the particle can be represented in a phase space 

spanned by the coordinate   and the momentum  .  The instantaneous disposition of the particle is 

represented as a single point (the phase point) in this two-dimensional plane.  As the particles moves, it 

will trace out a continuous curve in phase space (see this animation).  In fact it traces out a closed curve 

in the shape of an ellipse.  The phase point will move clockwise on the ellipse as time evolves.  Note that 

the phase point is a mathematical point, because we can specify the position and momentum of the 

http://paws.kettering.edu/~drussell/Demos/phase-diagram/phase-diagram.html
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particle with arbitrary precision in classical mechanics.  The size of the ellipse can be continuously varied 

as well, simply by changing the total energy   of the particle slightly. 

If we apply the ideas of quantum mechanics to phase space, we see a couple of interesting 

things.  First the disposition of the system is smeared out in phase space by the Heisenberg Uncertainty 

principle.  We cannot simultaneously specify the coordinate and momentum of the particle to arbitrary 

precision, but we are limited to           .  Thus the phase point becomes a phase blob.  In 

addition, the Bohr-Sommerfeld quantization condition says that the area enclosed by the orbits in phase 

space (that’s the geometrical interpretation of      ) must be quantized in units of Planck’s constant  !  

Planck’s constant has a new role as the quantum of phase space volume.  It is the minimum volume that 

is taken up by the phase blob, and it sets the scale for the granularity or discrete structure of phase 

space.  Two states whose phase points are within   of each other in phase space are indistinguishable, 

at least quantum mechanically.  Hence there is a limit to how many states can fit in phase space, and 

this forms the basis for counting the states of a system (an essential step in calculating a partition 

function!)  The number of states with energy less than or equal to a given orbit in phase space is given 

by   
 

 
     .  With this simple prescription we can count states simply by calculating areas in phase 

space.  In other words, a sum over states (as in the partition function) can be replaced with an integral 

over phase space, normalized by Planck’s constant. 

We can now write the classical partition function for   particles in three dimensions in the 

canonical ensemble (i.e. the system is in thermal equilibrium with a large reservoir at temperature  ): 

           
 

                                                        , where 

                                                 is the Hamiltonian of the   particle 

system.  The Hamiltonian is an expression for the total energy of the system in terms of all the 

coordinates and momenta of all the particles.  Note that there are    infinite integrals over all of the 

coordinates and momenta of all the particles.  The pre-factor is the quantum volume of this 

   dimensional phase space. 

As an example, consider a single particle in a three-dimensional box, just as we did before in the 

ideal gas calculation (   calculation, Lecture 10).  The particle is of mass   and is confined inside a cube 

of sides           by an infinite square well potential.  The classical Hamiltonian is   
     

  
 

  
    

    
 

  
, 

and the classical partition function has only 6 integrals: 

           
 

     
 

    
 

    
 

     
 

      
 

      
 

  
    

    
    

     .  The coordinate integrals 

yield a factor of     , while the momentum integrals break into a product of three Gaussian integrals, 

and the result is              
  

    
 
   

, which was previously written as               , where    is 

called the quantum concentration.  This is exactly the result that we derived using the full-blown 

quantum partition function in Lecture 10.  This result demonstrates that one can solve classical 

statistical mechanics problems by using only the classical Hamiltonian (rather than solving the quantum 

problem from scratch), along with the ‘hybrid’ expression for the classical partition function above. 
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We then considered the 1-dimensional harmonic oscillator, a problem that was previously 

solved with quantum statistical mechanics in lecture 11.  The classical Hamiltonian is   
  

  
      , 

as stated above.  The classical partition function is written as 

           
 

 
   
 

     
 

  
   

         
    .   Note that the coordinate and momentum are 

integrated over every possible value, out to   .  In other words, we assume that the system can 

borrow any amount of energy from the reservoir to explore every possible location in phase space.  In 

fact the reservoir is finite, and the energy borrowed from it must also be finite.  However, these high 

energy states come into the integral with very small weight in the Boltzmann factor, and we make little 

error by extending the limits of integration to   .  The partition function is just the product of two 

Gaussian integrals and can be quickly evaluated as                .  Note that this does not agree 

with the quantum statistical mechanics result,          
 

        .  This is expected because the 

classical calculation is done in the high temperature limit where              in this case.  Take 

the high-temperature limit of the quantum mechanical partition function, and you find          
 

     
  

 
 
     , which agrees with the classical result.  From this we see that the classical partition 

function is not always equal to the full quantum partition function, but they should agree in the high 

temperature limit. 


